Free Surface Heat Transfer and Innovative Designs for Thin and Thick Liquid Walls

نویسندگان

  • A. Y. Ying
  • N. Morley
  • S. Smolentsev
  • K. Gulec
  • P. Fogarty
چکیده

Design widows on free surface flows in the APEX study are derived from the viewpoints of the free surface heat transfer, the adaptation of liquid flows to the topological constraints, and temperature requirements for plasma operation and power conversion efficiency. Within these constraints, the temperature of the free liquid surface facing the plasma is the most critical parameter governing the amount of liquid that evaporates into the plasma chamber. Present analyses show that a 2 cm or a 40 cm thick lithium layer can be established throughout the ARIES-RS reactor using a velocity of 10 m/s while operating under the plasma compatible surface temperature. However, like solid metallic walls, the liquid lithium walls require the use of electrical insulators to overcome the MHD drag. As for Flibe free surface flows, the MHD effect caused by interaction with the mean flow is negligible, while a fairly uniform flow of 2 or 45 cm thick can be maintained throughout the reactor based on 3-D hydrodynamics calculations. However, being a low thermally conducting medium, the Flibe surface temperature highly depends on the extent of the turbulent convection. The heat transfer analyses based on the κ−ε model of the turbulence, including MHD effects and various boundary conditions, predict a range of temperatures that may be beyond the plasma compatible temperatures. If indeed the Flibe surface temperature is high relative to the plasma operation limit, further design adjustments will be required to accommodate this deficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane

Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...

متن کامل

Numerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field

In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...

متن کامل

Effect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer

In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...

متن کامل

Melting Heat Transfer and Radiation Effects on Jeffrey Fluid Flow over a Continuously Moving Surface with a Parallel Free Stream

This article is proposed to address the melting heat transfer of a Jeffrey fluid in Blasius and Sakiadis flow caused due to a moving surface. Thermal radiation and a constant free stream are considered in this mathematical model. The non-linear coupled dimensionless equations from the governing equations are attained by employing appropriate similarity transformations. The resulting dimensionle...

متن کامل

Evaluation of wall thickness and porosity effects on the conjugate free convection heat transfer rate of hybrid nanofluid inside a square cavity

At present study, effects of wall thickness and porosity on the conjugate free convection heat transfer inside a square cavity have been examined. Continuity, momentum and energy equations for fluid and solid matrix phases are governing equations in present work. Mentioned equations and related boundary conditions have been transformed into their non-dimensional forms. They are solved using fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999